Ergodic sequences of probability measures on commutative hypergroups

نویسنده

  • Liliana Pavel
چکیده

We study conditions on a sequence of probability measures {µ n } n on a commutative hyper-group K, which ensure that, for any representation π of K on a Hilbert space Ᏼ π and for any ξ ∈ Ᏼ π , (K π x (ξ)dµ n (x)) n converges to a π-invariant member of Ᏼ π. 1. Introduction. The mean ergodic theorem was originally formulated by von Neu-mann [13] for one-parameter unitary groups in Hilbert space. Riesz [11] and Yosida [16] gave the first simple proofs that if T is a bounded linear operator on a reflexive Banach space with subunitary norm, the corresponding sequence of averages (A n) n , A n = n

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis on Symmetric Cones (oxford Mathematical Monographs)

measure always exists on a commutative hypergroup K, and there always exists a 'Plancherel measure' on the dual space K of equivalence classes of irreducible representations of K, with respect to which Plancherel's formula holds for Fourier transforms. In contrast with the case of a locally compact abelian group, however, the Plancherel measure is not necessarily a Haar measure on K, and K need...

متن کامل

Some Multipliers Results on Compact Hypergroups

A hypergroup is roughly speaking a locally compact Hausdorff space which has enough structure so that a convolution on the corresponding vector space of Radon measures makes it a Banach algebra. Hypergroups generalize in many ways topological groups. In this paper we extend to compact not necessarily commutative hypergroups some basic techniques on multipliers set forth for compact groups in He...

متن کامل

A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

متن کامل

?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups

In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...

متن کامل

Discrete commutative hypergroups

The concept of a locally compact hypergroup was introduced by Dunkl [6], Jewett [14] and Spector [26]. Hypergroups generalize convolution algebras of measures associated to groups as well as linearization formulae of classical families of special functions, e.g. orthogonal polynomials. Many results of harmonic analysis on locally compact abelian groups can be carried over to the case of commuta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004